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Abstract

Multiplex PCR analyses of DNAs from genotypically unique Escherichia coli
strains isolated from the feces of 138 humans and 376 domesticated animals from
Jeonam Province, Korea, done using primers specific for the chuA and yjaA genes, and
an unknown DNA fragment, TSPE4.C2, indicated that none of the strains belonged to E.
coli phylogenetic group B2. In contrast, phylogenetic group B2 strains were detected in
about 17% (8 of 48 isolates) from 24 wild geese feces and in 3% (3 of 96) isolates
obtained from the Yeongsan River in Jeonam Province, Korea. The distribution of E. coli
strain in phylogenetic groups A, B1, and D varied depending on the host examined and
there was no apparent seasonal variation in the distribution of strains in phylogenetic
group among the Yeongsan River isolates. The distribution of four virulence genes
(eaeA, hlyA, stx;, and stxy) in isolates was also examined by using multiplex PCR.
Virulence genes were detected in about 5% (38 of 707) of the total unique strains
examined, with 24, 13, 13, and 9 strains containing hlyA, eaeA, stx; and stx;, respectively.
The virulence genes were most frequently present in the phylogenetic group B1 strains
isolated from beef cattle. Taken together, results of these studies indicate that E. coli
strains in phylogenic group B2 were rarely found in humans and domesticated animals
in Jeonam Province, Korea and that the majority of strains containing virulence genes
belonged to phylogenic group B1 and were isolated from beef cattle. Results of this
study also suggest that the relationship between the presence and types of virulence genes

and phylogenetic groupings may differ among geographically-distinct E. coli populations.
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Introduction

Escherichia coli is a normal inhabitant of the lower intestinal tract of
warm-blooded animals and humans. While the majority of E. coli strains are
commensals, some are known to be pathogenic, causing intestinal and extra-intestinal
diseases, such as diarrhea and urinary tract infections (42). Phylogenetic studies done
using multilocus enzyme electrophoresis (MLEE) and 72 E. coli strains in the reference
ECOR collection showed that E. coli strains can be divided into four phylogenetic
groups (A, B1, B2, and D) (20, 41, 48). Recently, a potential fifth group (E) has also
been proposed (11). Since multiplex PCR was developed for analysis of phylogenetic
groups (6), a number of studies have analyzed a variety of E. coli strains for their
phylogenetic group association (10, 12, 17, 18, 23, 54). Duriez et al. (10) reported the
possible influence of geographic conditions, dietary factors, use of antibiotics, and/or
host genetic factors on the distribution of phylogenetic groups among 168 commensal E.
coli strains isolated from human stools from three geographically distinct populations in
France, Croatia, and Mali. Random amplified polymorphic DNA (RAPD) analysis of
the intraspecies distribution of E. coli in pregnant women and neonates indicated that
there was a correlation between the distribution of phylogenetic groups, RAPD groups,
and virulence factors (54). Moreover, based on comparisons of the distribution of E. coli
phylogenetic groups among humans of different sex and ages, it has been suggested that
E. coli genotypes are likely influenced by morphological, physiological, and dietary
differences (18). In addition, climate has also been proposed to influence the distribution
of strains within E. coli phylogenetic groups (12). There are now several reports
indicating that there is a potential relationship between E. coli phylogenetic groups, age,

and disease. For example, E. coli isolates belonging to phylogenetic group B2 have been



69  shown to predominate in infants with neonatal bacterial meningitis (27), and among

70  urinary tract and rectal isolates (55). Also, Nowrouzian et al. (39) and Moreno et al. (37)
71  reported that strains belonging to phylogenetic group B2 persisted among the intestinal
72 microflora of infants and were more likely to cause clinical symptoms.

73 Boyd and Hartl (2) reported that among the E. coli strains in the ECOR and the
74 diarrheagenic E. coli (DEC) collections, strains in phylogenetic group B2 carry the

75  greatest number of virulence factors, followed by those in group D. Virulence factors
76  carried by group B2 strains are thought to contribute to their strong colonizing capacity,
77  a greater number of virulence genes have been detected in resident strains than in

78  transient ones (38). Moreover, a mouse model of extraintestinal virulence showed that
79  phylogenetic group B2 strains killed mice at greater frequency and possessed more

80  virulence determinants than strains in other phylogenetic groups, suggesting a link

81  between phylogeny and virulence genes in E. coli extraintestinal infection (45). In

82  contrast, Johnson and Kuskowski (25) suggested that a group B2 ancestral strain might
83  have simply acquired virulence genes by chance, and that these genes were vertically
84  inherited by group members during clonal expansion. However, numerous studies

85  published to date suggest that there is a relationship between the genomic background
86  of phylogenetic group B2 and its association with virulence factors (12, 28, 34, 39, 45).
87 Both enteropathogenic (EPEC) and enterohemorrhagic (EHEC) E. coli are

88  among the most important food-borne pathogens worldwide, often causing severe

89  gastrointestinal disease and fatal infections (13). While EPEC strains cause diarrhea,

90  and generally do not produce enterotoxin, they possess adherence factor which is

91  controlled by the chromosomal gene, eaeA, encoding for intimin (8). Unlike the EPEC,

92  however, the EHEC typically contain the hlyA, stx;, and stx; virulence genes, encoding
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for hemolysins, and Shiga-like type 1 and 2 toxins, respectively, and eaeA. The ability to
detect EHEC has been great facilitated by the use of multiplex PCR (13, 44, 53).

Several studies have shown that strains producing Shiga-like toxin 2 are more frequently
found in cases of hemolytic-uremic syndrome (HUS) than are those containing
Shiga-like toxin 1 (30, 43, 46, 49).

In the study reported here, we examined the distribution of phylogenetic groups
and the prevalence of virulence genes in 659 genotypically-unique E. coli strains
isolated from humans and domestic animals in Korea. In addition, we also tested 48 and
96 non-unique E. coli isolates from wild geese and the Yeongsan River, respectively for
phylogenetic distribution and virulence gene profiles. Here we report that contrary to
what has been previously reported in other parts of the world, no E. coli strains
belonging to phylogenetic group B2 were found in domesticated animals and in humans
from Jeonam Province, Korea. We also report that among the strains we examined,
virulence genes were mainly found in phylogenetic group B1 strains isolated from beef
cattle. Results of these studies may prove to be useful for the development of risk

management strategies to maintain public health.

Materials and Methods

Isolation of E. coli from humans and domesticated animals, Jeonam Province,
Korea

The sources of E. coli isolates, the number of isolates obtained from each
source, and the number of individual hosts sampled are listed in Table 1. The human

isolates were obtained from randomly-selected stool samples collected from healthy
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humans, and patient isolates were obtained in August 2008 from diarrheic patients at a
hospital located in Jeonam Province, Korea. The data obtained from studies done with E.
coli isolates from healthy humans and patients with diarrhea were analyzed separately.
The E. coli strains from domesticated animals were obtained in May 2006 by using
fecal swabings from chickens, ducks, swine, and beef and dairy cattle collected at farms
in Jeonam Province, Korea. According to the Korea Food and Drug Administration
(KFDA), antibiotics, such as tetracycline and penicillin, are regularly fed to
domesticated animals as feed additives (31). Wild geese isolates were obtained from
fecal swabs collected in December 2007 in Jeonam Province, Korea, where migrating
birds from Siberia rest every winter. Fecal swabs were stored in tubes on ice and
streaked within 6 hours of collection onto mFC agar (Difco, Detroit, MI) plates and
incubated at 44.5°C for 18 hours. Subsequently, three to five blue colonies appearing on
mFC agar plates, per fecal sample, were further streaked for purification onto mFC agar
plates and incubated overnight at 44.5°C. All isolates were verified to be E. coli as

previously described (9), and preserved at -70°C in LB freezing buffer (47).

Isolation of E. coli from Yeongsan River, Jeonam Province, Korea

One site on the Yeongsan River, in Jeonam Province, Korea, was selected for
these studies. The site is a part of a tributary upstream from the Yeongsan River and
surrounded by an urbanized area. Environmental E. coli strains were obtained using the
membrane filtration technique according to U. S. Environmental Protection Agency
(USEPA) method 1603 (52). Briefly, 500 ml of surface water was sampled every 3
months from November 2007 to August 2008, and 100 ml, 10 ml, and 1 ml aliquots of

surface water were individually filtered onto the surface of 0.45 pm pore-size
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membranes (Advantec, Tokyo, Japan). Filtrates were incubated on modified mTEC agar
(Difco, Detroit, MI) plates at 35°C for the first 2 hours, and then at 44.5°C for 16 hours.
Red- or magenta-colored colonies were considered to be E. coli, and 24 randomly
selected E. coli isolates were further streaked and incubated under the same condition

and used for subsequent species verification as described above.

Horizontal fluorophore-enhanced rep-PCR DNA fingerprinting

Horizontal fluorophore-enhanced rep-PCR (HFERP) DNA fingerprinting of the
E. coli strains was done as described previously (29). Briefly, a loopful of bacteria from
each strain was suspended in 0.05 N NaOH for 15 min at 95°C, and 1 pl was used as
template for PCR. The HFERP DNA fingerprinting was done using BOXA1R primers
labeled with 6-FAM (6-carboxyfluorescein; Genotech Co. Ltd., Korea) as previously
described (Johnson et al. 2004). All gel lanes contained Genescan-2500 ROX
(6-carboxy-X-rhodamine) (Applied Biosystems, Foster City, Calif.) as an internal size
standard. Gel images were captured using a Typhoon 9400 variable mode imager
(Molecular Dynamics/Amersham Biosciences, Sunnyvale, CA) using the fluorescence
acquisition mode, with the following settings: green excitation laser, 610 BP 30 and 526
SP emission filters in the autolink mode, normal sensitivity, 200-um/pixel scan
resolution, +3-mm focal plane, and 800-V power. Scanned images of HFERP DNA
fingerprints were processed using Image Quant (Molecular Dynamics/Amersham
Biosciences, Sunnyvale, CA) and converted to 256 gray-scale tagged image file format
images. Gel images were normalized and analyzed using Bionumerics v.5.0 software
(Applied Maths, Sint-Martens-Latem, Belgium). Isolates which showed > 92%

similarity from the same host were considered to be clones and removed from further



165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

analyses (22, 29). The percentages of known-phylogenetic group strains assigned to
their correct phylogenetic group were calculated by using Jackknife analysis with

maximum similarities.

Phylogenetic grouping and virulence gene identification

Only unique strains defined by the HFERP DNA fingerprint analysis were
subjected to analyses of phylogenetic groups and virulence gene identification.
Phylogenetic grouping was done as previously described by Clermont et al. (6). The
presence of the ibeA gene (invasion of brain epithelium) among Clermont phylogenetic
group D strains having a chuA *, yjaA ~, and TSPE4.C2 " genotype, was examined as
previously described (14).

The presence of virulence genes in E. coli strains was determined by using
multiplex PCR as previously described (44). Genomic DNA from strains was extracted
from cells as described above, diluted 10-fold in TE buffer, and 1 ul was used as

template for multiplex PCR using a Labcycler (SensoQuest, City, Germany) instrument.

Results and Discussion

Phylogenetic grouping patterns

A total of 1,585 E. coli isolates obtained from humans and domesticated
animals were examined for their genetic relatedness by using HFERP DNA
fingerprinting as described by Johnson et al. (29). Strains sharing the same individual
host and having a genetic similarity > 92% in HFERP banding patterns were considered

to be clones (29) and were removed from further analyses. Based on this definition, 659
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strains were considered to be unique and were subjected to further phylogenetic
grouping and virulence gene analyses. The E. coli isolates from migrating wild geese and
the Yeongsan River, however, were not subjected to HFERP analysis to remove clones.
The distribution of phylogenetic groups among genomically-unique E. coli
isolates obtained from humans and animals are summarized in Figure 1. The E. coli
strains from each host source showed a different distribution pattern of phylogenetic
groups. The E. coli strains from healthy humans were nearly equally represented in each
phylogenetic group, with 29, 34, and 36% of the strains in phylogenetic groups A, B1, and
D, respectively. There was a slightly greater number of isolates in phylogenetic group D
(42.9%) from human patients compared to the other phylogenetic groups, A (23.8%) and
B1 (33.3%). The majority of E. coli isolates from chickens were localized to phylogenetic
group A (55%), followed by strains in groups B1 (31.7%) and D (13.3%). A similar pattern
of distribution was also found among isolates from domesticated ducks, where about 63,
24, and 13% of strains were in phylogenetic groups A, B1, and D, respectively. In contrast,
E. coli isolates from beef cattle had the greatest percentage of group B1 strains (79.2%)
among all sources, and fewer isolates belonging to groups A (15.1%) and D (5.7%). A
similar trend was observed among E. coli isolates from dairy cattle, where 62% of the
isolates belonged to group B1, and a fewer percentage to groups A (32.0%) and D (5.7%).
Swine isolates showed unique phylogenetic group distribution, with an extremely low
percentage of group D (0.7%) strains, a relatively high percentage of group A (64.7%)
strains, and a moderate percentage of group B1 (34.5%) strains. The phylogenetic group
distribution of isolates from migrating wild geese isolates was the most distinctive, the
majority of isolates (60.4%) were in phylogenetic group B1, and 16.7, 14.6 and 8.3% of

the remaining isolates were in phylogenetic groups B2, A and D, respectively. It should
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be noted that the phylogenetic group distribution pattern seen among E. coli isolates from
migrating wild geese was significantly different from that seen among isolates from
domesticated poultry chicken and duck, although the chicken and duck isolates showed
similar phylogenetic distribution patterns. Taken together, results of these studies indicate
that E. coli isolates belonging to phylogenetic group A were more frequently found in
chickens, ducks and swine, whereas those in phylogenetic group B1 were
predominantly found in isolates obtained from beef and dairy cattle. Results in Figure 1
also show that there was a different distribution pattern of E. coli phylogenetic group D
strains from humans and animals. While the majority of strains from healthy humans
(36%) and patients (42.9%) belonged to phylogenetic group D, strains in this
phylogenetic group generally comprised a small number of isolates obtained from all the
animals, including wild geese.

Among the 659 genomically-unique strains examined, 15 isolates (11, 2, 1, and 1
from healthy humans, ducks, chickens, and human patients, respectively) were found to
be members of Clermont phylogenetic group D and had a chuA", yjaA’, and TSPE4.C2"
genotype. Recently, Gordon et al. (15) reported that strains having this genotype and
contain the ibeA gene are likely members of phylogenetic group B2. PCR analyses done
here indicated that 5 of the 15 isolates (3, 1, and 1 from healthy humans, a chicken, and a
human patient, respectively) contained the ibeA gene. While this result suggested that
these strains may possibly belong to phylogenetic group B2 as redefined , by Gordon et al.
(16), we propose to assign these 5 strains to phylogenetic group D until the method
proposed by Gordon et al. is evaluated by others using a larger number of
geographically-diverse isolates and becomes a more established method for the

assignment of E. coli strains to phylogenetic groups.
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237 In the study reported here, no E. coli Clermont phylogenetic group B2 strains,
238  using the classical, excepted, definition, were found among the isolates we obtained
239  from humans or domesticated animals in Korea (Figure 1). This is not likely a

240  methodological issue as the multiplex (triplex) PCR method used in this study was

241  previously shown to correctly assign 95% of strains to phylogenetic groups B1 and B2,
242 when compared to MLST (16). Moreover, since phylogenetic group B2 strains were
243  identified among the river water isolates and migrating geese isolates examined, this
244 indicates that the methods used was sufficiently robust to detect strains in the group.
245  Previously, Escobar-Paramo et al. (12) reported that the prevalence of phylogenetic
246  group B2 isolates among individuals in temperate regions of mainland France,

247  Michigan, and Tokyo was greater than that found among people in tropical populations
248  from Bogota, Cotonou, and French Guyana. In contrast, our data shows that the

249  phylogenetic group distribution for human isolates from Jeonam Province, Korea was
250  nearly equally divided among phylogenetic groups A (30%), B1 (34%), and D (36.2%).
251  Interestingly, it was also previously reported that E. coli strains from humans in Tokyo
2562  were predominantly in phylogenetic group B2, and no B1 strains were present (40). The
253  different phylogenetic group distribution among E. coli strains from Japan and Korea may
254  be due to differences in dietary habits. Moreover, distributional differences among

255  phylogenetic groups of human E. coli isolates are not static and were shown to change
256 inresponse to geographic shifts in populations, which typically result in subsequent
257  alterations to diet (49). For example, shifts in E. coli phylogenetic group were found
258  among 25 humans who expatriated from metropolitan France to French Guyana (50).
259  This data suggests that there is a strong environmental influence on the phylogenetic

260  group distribution of intestinal E. coli isolates in humans.
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The phylogenetic distribution of human E. coli isolates may also be impacted by
the use of antibiotics. It was previously reported that E. coli strains belonging to
phylogenetic group B2 were less likely to be resistant to antibiotics than non-B2 group
strains (24, 51). Skurnik et al. (51) reported that only 3.7% of group B2 strains carried
integrons, whereas greater than 16% of strains from other phylogenetic groups did. As
compared to other industrialized countries, the use of antibiotics in Korea is quite
extensive, with a defined daily dose (DDD) rate of 33.2 /1000 inhabitants/day. In
contrast, the DDD rate in OECD countries averaged 21.3 /1000 inhabitants/day (35).
Moreover, E. coli strains resistant to multiple antimicrobial substances are frequently
observed in Korea (4, 5, 36). Taken together, these factors may contribute to the absence
of phylogenetic group B2 strains among the Korean human populations we examined.

In addition to animals and humans, the phylogenetic distribution of
environmental E. coli isolates from the Yeongsan River, Jeonam province, Korea, was
also examined during the four seasons of an entire year. The Yeongsan River water
contained, on average, greater than 200 colony forming units (CFU) of E. coli per ml in
all seasons (data not shown). Results in Figure 2 show the seasonal variation in the
phylogenetic group distribution of E. coli strains in the Yeongsan River. Similar
distribution patterns were seen in November 2007 and May 2008 samples. A high
percentage of group B1 strains was found in both the November 2007 and May 2008
samples (45.8% and 54.2%, respectively), while a smaller percentage of strains were
shown to comprise phylogenetic groups A (25.0% and 33.3%, respectively) and D
(25.0% and 12.5%, respectively). In contrast, the February 2008 and August 2008
samples contained a high percentage of group A strains (87.5% and 83.3%, respectively).

In contrast to what was found with E. coli isolates from humans and domesticated

-12 -
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animals, E. coli strains in phylogenetic group B2 were detected in the November 2007
(4.2%) and August 2008 (8.3%) water samples. However, these strains were only
infrequently isolated. Results in Figure 1 also show that a greater percentage of E. coli
strains obtained from chickens, ducks, and swine were in phylogenetic group A,
whereas a high percentage of strains in group B1 were observed among E. coli obtained

from beef and dairy cattle and wild geese.

Virulence gene distribution

The occurrence and distributional pattern of virulence genes among the
phylogenetic groups of unique E. coli isolates obtained from the various human and
animal hosts is shown in Table 2. Of the 659 unique strains and the 48 wild geese and
96 fresh water isolates examined, only 38 strains (4.7%) from healthy humans, human
patients, chickens, beef cattle, dairy cattle, and swine were found to contain virulence
genes. Approximately 20% of the beef cattle isolates in phylogenetic group B1 (17 of 84
strains) were found to carry virulence genes, and 16.7 and 12.5% of the strains were in
phylogenetic groups D and A, respectively. The distribution of virulence genes in dairy
cattle had a different pattern than those from beef cattle. While 23.5% of dairy cattle
strain containing virulence genes were in phylogenetic group A (4 out of 17 strains),
15.2% of the strains were in group B1 (5 out of 33 strains). None of the dairy cattle
strains in phylogenetic group D contained virulence genes. Taken together, our results
indicated that the percentage of E. coli strains carrying virulence genes was unequally
distributed among sources, and depended both on host source and the prevalence of

strains in each phylogenetic group. For example, phylogenetic group B1 strains from

-13-



308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

each host source generally had a great percentage of strains carrying virulence genes, and

those in group D had a lesser number.

The greatest number of strains carrying virulence genes was found in
phylogenetic group B1 strains obtained from beef cattle (15.7%), followed by group Bl
strains from dairy cattle (9.4%). Ishii et al. (23) and Girardeau et al. (15) reported that
Shiga-like toxin producing E. coli (STEC) strains segregated mainly into phylogenetic
group B1. This is similar to the results we report here for isolates obtained from Jeonam
Province, Korea. No strains from ducks or wild geese were found to contain virulence

genes.

The distributional pattern of virulence genes tested in this study is shown in
Figure 3. The eaeA (an attaching and effacing (A/E) protein, intimin, responsible for
pathogenicity) was detected less in phylogenetic group A strains than those in the other
groups (A: 0.34%, B1:3.68%, and D 2.08%), which is in agreement with results from a
previous report (15). The intimin protein has been shown to be important for
enterohemorrhagic infection of E. coli (1, 3, 19, 32, 33). The eaeA has also been used to
detect a chromosomally-localized pathogenicity island, referred to as the locus of
enterocyte effacement (LEE), and strains containing eaeA and lacking stx; and stx, are
referred to as enteropathogenic E. coli (EPEC) (21). In our studies, potential EPEC
strains were detected in 2.2, 4.7, and 2.8% of isolates from healthy humans, human
patients, and beef cattle, respectively, while potential EHEC strains (eaeA* stx") were
detected in 4.7 and 1.9% of strains from beef and dairy cattle, respectively (Table 3). By
far, the greatest percentage of strains containing eaeA, hiyA, stx; and stx; belonged to

phylogenetic group B1 (Figure 3). Genes encoding for stx; and stx, were found in 2.5%
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(18 out of 707) of the strains examined, and the greatest number of E. coli strains
carrying virulence genes were seen in the beef (18.9%; 20 out of 104 strains) and dairy
cattle (17.0%; 9 out of 53) isolates (Table 3). A similar percentages of STEC strains
were reported to be present among E. coli isolates obtained from cattle fecal material in

Germany (56) and Australia (7).

Population structure of E. coli strains obtained from human and domesticated
animal hosts

The genetic relatedness of the unique E. coli strains containing virulence genes are
shown in Figure 4. Generally speaking, the strains could be divided into two major
groups (A and B) at the 45% similarity level. The group A strains could be further
subdivided into two subclusters, I and II. Subcluster II strains were further subdivided
into three subgroups (II.1, 1.2, and I1.3). The subgroup I1.2 and I1.3 strains were
separated at the 63% similarity level and comprised 47% (18 out of 38) of the analyzed
strains. Regardless of host and virulence profiles, 47% of the strains (18 of 38) were
related to each other at the > 80% similarity level. Moreover, 22% (6 out of 27) of the
phylogenetic group B1 strains were clustered at a > 88% similarity level. The majority
(71.1%) of strains carrying virulence genes belonged to phylogenetic group B1, and

71% (15 out of 21) of the cluster A, subgroup II strains were from beef cattle.

The patterns of virulence gene profiles were not uniformly distributed among
the strains examined by HFERP analysis. For example, while strains aal8, ak70, and
aa84 shared the same virulence gene profile (hlyA, stx;, and stx, positive) they were
only distantly genetically related, at less than the 70% similarity level. It also should be

noted that one phylogenetic group D strain carried all four virulence genes tested and
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was not genetically related to any of the strains carrying similar virulence genes.

Multivariate analysis of variance (MANOVA) was used to determine if the
HFERP DNA fingerprint patterns of strains could be used to differentiate phylogenetic
groups. The percentage of strains correctly classified into each group was determined by
using Jackknife analysis (Table 4). Results in Figure 5 and Table 4 show that cluster
analysis separated the strains into three groups which did not correlated well with
phylogenetic groupings. Approximately 70 to 75% of group A and B1 strains were
correctly assigned to their respective phylogenetic groups, whereas about 20% of these
strains were misclassified. The phylogenetic group D strains showed the lowest

percentage of correct assignment (57.3%).

Conclusions

Six hundred and fifty-nine genomically-unique E. coli isolates obtained from
domesticated animals and humans were subjected to phylogenetic grouping analysis
using multiplex PCR. Of the strains examined, 291, 272, and 96 isolates were assigned
to phylogenetic groups A, B1, and D, respectively. No group B2 strains were found
among E. coli isolated from feces of any of domesticated animals and humans from
Jeonam Province, Korea. However, strains in phylogenetic group B2 were found in the
isolates obtained from wild geese and Yeongsan River water. The clustering of strains by
HFERP DNA fingerprint analysis did not correlate well with phylogenetic group
designations made based on PCR analyses, and the method misclassified about 20% of
group A and B1 strains, and about 40% of group D strains. While it was also previously

reported that BOX-PCR DNA fingerprinting may not be useful for differentiating
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strains within E. coli phylogenetic groups (26), the method has proven to be useful for
strain-level discrimination, to cluster genetically similar E. coli ecotypes, and to
differentiate sources and virotypes of E. coli (9, 23, 29).

The distribution of E. coli strains in the three phylogenetic groups varied depending on
the animal host from where the strains were obtained; beef and dairy cattle isolates
showed a relatively similar distributional pattern of phylogenetic groups, as did the duck
and chicken isolates. Our data also support previous suggestions that diet and antibiotic
usage may strongly influence the phylogenetic group distribution of E. coli strains (17,
18, 24, 51). Moreover, results from these studies indicate that the distribution of E. coli
strains in phylogenetic groups may be strongly influenced by geographical boundaries.
Therefore, further physiological and epidemiological studies are needed to clarify the
reason why phylogenetic group B2 strains are rare in South Korea.

More virulence genes were found in the Korean phylogenetic group B1 strains
we examined than in strains from the other phylogenetic groups. This suggests that these
strains may either share a common ancestor, or are subjected to intensive horizontal gene
transfer and recombination events. The relatively frequent occurrence of eaeA positive
strains among beef cattle isolates suggests that further surveillance studies are required
in order to properly assess risk associated with E. coli from different animal sources in

Korea.
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Figure Legends

Figure 1. Distribution of phylogenetic groups among E. coli isolates obtained from
humans and domesticated animals: ( 0 ) group A; (@ ) group B1; ( m) group B2 and;

(®) group D.

Figure 2. Seasonal variations in phylogenetic group distribution among E. coli obtained
from the Yeongsan River, Jeonam province, Korea: (o) group A; (4@ ) group Bl; (m)

group B2 and; ( ® ) group D.

Figure 3. Distribution of virulence genes among phylogenetic groups of E. coli obtained

from humans and domesticated animals: ( m ) eaeA; (4 ); hlyA (0O ) stx;; and ( B ) stx;.

Figure 4. Genetic relatedness of E. coli strains possessing virulence genes. The
dendrogram was generated from HFERP DNA fingerprints using Pearson’s
product-moment correlation coefficient and the unweighted-pair group method with

arithmetic means clustering method.

Figure 5. Phylogenetic grouping analysis of HFERP DNA fingerprints using MANOVA:
group A (@ );group B1 (@);group D (@®). HFERP DNA fingerprints from E. coli strains
obtained from animal and human sources were numerically converted to binary
band-matching character tables and analyzed by MANOVA accounting for the

covariance structure.
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621 Table 1. Sources and numbers of E. coli isolates used in this study

No. of individual
Source No. of isolates No. of unique strains
hosts sampled

Human 122 442 141
Patient 16 83 21
Chicken 57 154 60
Duck 93 220 139
Beef Cattle 71 266 106
Dairy Cattle 38 194 53
Swine 117 226 139
Wild Geese 24 48 ND'
Fresh water 4 times a year 96 ND

622  'ND, not determined

229 -




623  Table 2. The occurrence of E. coli strains with virulence genes and phylogenetic groups

% unique

o) s
No. of unique N(?' of strains with o nnique
. .. unique . strains with
Phylogenetic strains in . . virulence .
Source . strains with . virulence genes
group phylogenetic . genes isolated . .
virulence in phylogenetic
groups enes from each rou
g source group
A 42 0 0 0
Human B1 48 2 1.4 4.2
D 51 1 0.7 2.0
A 0 0 0
Patient Bl 1 4.8 14.3
D 9 0 0 0
A 33 1 1.7 3.0
Chicken B1 19 0 0 0
D 8 0 0 0
A 88 0 0 0
Duck Bl 33 0 0 0
D 18 0 0 0
16 2 1.9 12.5
Beef
" Bl 84 17 15.7 202
cattle
D 6 1 0.9 16.7
' A 17 4 7.6 23.5
Dairy Bl 33 5 9.4 15.2
cattle
D 3 0 0 0
A 90 2 1.4 2.2
Swine B1 48 2 1.4 4.2
D 1 0 0 0
624
625
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626  Table 3. Comparison of the virulence gene patterns in unique E. coli strains obtained from different human and domesticated animal

627 sources.

Virulence gene pattern No. of unique strains with virulence gene pattern found in following sources:
4 4 4 - wilg _ Nostrains
eaeA hlyA stx; stx; Humans Patients Chickens Ducks  Beefcattle Dairy cattle  Swine Geese with virulence gene
profiles

+ + + + 0 0 0 0 1 0 0 0 1
+ + + - 0 0 0 0 2 0 0 0 2
+ + - - 0 0 0 0 1 1 0 0 2
+ - + - 0 0 0 0 1 0 0 0 1
+ - - - 3 1 0 0 3 0 0 0 7
- + + + 0 0 0 0 3 0 0 0 3
- + - - 0 0 1 0 1 8 1 0 11
- + - + 0 0 0 0 5 0 0 0 5
- - + - 0 0 0 0 1 0 1 0 2
- - - + 0 0 0 0 2 0 2 0 4
- - - - 138 20 59 139 84 44 135 48 667

No. unique strains tested 141 21 60 139 104 53 139 48" 705

No. strains from each host with virulence 3 1 1 0 20 9 4 0
genes

628  “Clonal isolates not removed
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629  Table 4. Assignment of unique strains to phylogenetic groups by using HFERP DNA

630  fingerprint and Jackknife analyses

631
Assigned Percent E. coli isolates in assigned group:
phylogenetic group A Bl D
A 73.2 18.4 229
Bl 19.2 75.7 19.8
D 7.6 5.9 57.3
632
633
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